Featured image credit: Kyodo
Launch Window | October 12, 2022 – 00:50:43-00:55:11 UTC | 09:50:43-09:55:11 JST |
---|---|
Mission Name | RAISE-3 & others, Epsilon Flight #6 |
Launch Provider | IHI Aerospace Co. Ltd (IA) |
Customer | – Japan Aerospace Exploration Agency (JAXA) – Institute for Q-Shu Pioneers of Space Inc. (iQPS) (for QPS-SAR-3 and 4) |
Rocket | Epsilon S Launch Vehicle |
Launch Location | Uchinoura Space Center, Kimotsuki, Kagoshima Prefecture, Japan |
Payload mass | ~280 kg (~620 lbs) |
Where are the satellites going? | Low Earth Orbit (LEO) |
Will they be attempting to recover the first stage? | No |
Where will the first stage land? | It will crash into the South China Sea |
Will they be attempting to recover the fairings? | No |
Are these fairings new? | Yes |
How’s the weather looking? | TBD |
This will be the: | – 1st orbital launch attempt for Japan in 2022 – 6th flight of an Epsilon rocket – 2nd flight of the Epsilon PBS variant – 135th orbital launch in 2022 |
Where to watch | If an official livestream is available, we will post the link here! |
What Does All This Mean?
Japan Aerospace Exploration Agency is launching RAISE-3 and 7 other payloads onboard an Epsilon rocket. A set of five CubeSats are flying alongside the main payload.
The primary payload for this flight is an on-orbit demonstration mission. It forms part of the Innovative Satellite Technology Demonstration Program which has been running since 2015. This is a 100 kg-class satellite that provides hosting for seven demonstration missions that are integrated onto the main RAISE-3 satellite. There is more information on this platform below.
Rideshare Cubesats:
Cubesat Name | Dimensions |
MAGNARO | 10 x 10 x 34 cm |
MITSUBA | 10 x 10 x 23 cm |
KOSEN-2 | 10 x 10 x 23 cm |
WASEDA-SAT-ZERO | 10 x 10 x 11 cm |
FSI-SAT | 10 x 10 x 11 cm |
RAISE-3 & others Mission
RAISE-3 (RApid Innovative payload demonstration SatellitE-3)

Mission | Component Name | Organisation | Objectives (summary) |
On-Orbit Demonstration of 920 MHz band Satellite IoT Platform using Satellite MIMO Technology | LEOMI | Nippon Telegraph and Telephone Corporation (NTT) | On-orbit demonstration of Multiple-Input and Multiple-Output (MIMO) telecommunication technology |
Software Receiver using Flexible Development Method | SDRX | NEC Space Technologies, Ltd. | On-orbit demonstration of a high-speed flexible software receiver using a signal processing board with COTS parts |
On-Orbit Evaluation of Commercial GPU and its Model-based Development | GEMINI | Mitsubishi Electric Corporation (MELCO) | On-orbit evaluation of commercial GPU enabling ultra-high speed computation. |
On-Orbit Demonstration of Micropropulsion System using Water Propellant | KIR | PaleBlue Inc. | On-orbit demonstration of micro-propulsion system using water as propellant. |
On-Orbit Demonstration and Performance Evaluation of PulsePlasma Thruster for Micro-satellite | TMU-PPT | Advanced Technology Institute, LLC. | On-orbit demonstration of Pulse-Plasma Thruster, enabling low-power and low-cost small propulsion system using solid propellant. |
On-Orbit Demonstration of Deployable Membrane Deorbit Mechanism for Micro-satellite | D-SAIL | Axelspace Corporation | On-orbit demonstration of deployable membrane structure, aiming to increase atmospheric drag and orbital decay rate. |
On-Orbit Demonstration of Lightweight Deployable Membrane Structure with Power Generation and Antenna Function for Society 5.0 | HELIOS | Sakase Adtech Co., Ltd. | On-orbit demonstration of lightweight deployable membrane structure with power generation and antenna function. |

The RAISE-3 platform is based on the previous RAISE-2 platform, with slightly modified specifications.
Item | Specification(s) |
Operational period | – 1 month for Commissioning Phase – 13 months for Nominal Operation Phase |
Orbit | – Sun-synchronous Orbit (initial) – Altitude: 560km (nominal) – Inclination: 97.6deg (nominal) – Local Time Descending Node: 9:30 am |
Launch | Planned in Fiscal Year 2022 |
Dimensions | Approximately 1 m x 0.75 m x 1 m (Launch configuration) |
Mass | Less than 110 kg |
Power generation | – More than 215W at BOL – More than 180W at EOL (Average power generation during sunshine period) |
Communication | – S-band for telecommand: Uplink: 4kbps, Downlink: 64kbps – X-band for mission data and stored telemetry. Downlink: 16Mbps |
Storage | 8 GB |
Attitude control | – 3-axis stabilized – Earth pointing for nominal attitude |
Available resources to mission payloads | – Mass: more than 23kg – Power: 105Wh (BOL) and 62Wh (EOL) over one orbit period – Data volume: 926.7MB per day – Payload mounting area: more than 2.5m2 |
MAGNARO
This is a 3U sized package that splits into two satellites after deployment. One is 2U and the other is 1U in size. They are connected by magnetism until their separation. After separating, they will maintain formation flying between 2 km to 500 km distance from each other. Amateur radio operators will be able to use these satellites as repeaters for long-range communication.

The satellites will be deployed into a Sun-Synchronous orbit at 550 km altitude. The combined mass of the two satellites is 4.4 kg. The name is abbreviated from “MAGnetically separating NAno-satellite with Rotation for Orbit control”. The satellites have been designed and built at Nagoya University.
MITSUBA
This satellites is described as “On-orbit degradation observation of COTS semi conductor for adding value to COTS database and On orbit demonstration of general USB device.” It has been built by the Kyushu Institute of Technology. The satellite has a mass of 1.7 kg.

KOSEN-2
This satellites main platform is 11 cm x 11 cm x 23 cm, with a YAGI-style directional antenna which extends after deployment. It is designed to study deformation of the Earth’s crust under the sea floor. It makes use of dual reaction wheels to maintain attitude control. It takes observations using a combination of fish-eye camera lenses and magnetic sensors. It has been developed by a partnership between the National Institute of Technology (KOSEN), Yonago College, Gunma College, and other educational bodies.

WASEDA-SAT-ZERO
This satellite is a technology demonstrator for 3D-printed satellites. Its aim is to have zero fixing screws, zero mechanical parts to be assembled together, and zero debris. This is achieved by 3D-printing the entire chassis as a single element.

It will be used to conduct experiments regarding deployment of membrane surfaces which might be used as solar panels for power generation or solar sail for propulsion. It has been designed at Waseda University. The total mass of the satellite is 1.2 kg.
FSI-SAT
This is a 1U-sized, low cost satellite featuring a multi-spectral camera and on-board data processing system. It is designed to demonstrate that this technology can be deployed and operated at this small scale and at low cost. The satellite has a mass of only 1.4 kg. It is built by the Future Science Institute.

QPS-SAR-3 and 4
QPS-SAR satellites are a set of small Earth observation satellites built by the QPS Institute (Institute for Q-shu Pioneers of Space, Inc.). They feature high resolution Synthetic Aperture Radar (SAR) in the X-band portion of the radio spectrum. When fully populated, the constellation is expected to have 36 satellites in operation.
This pair of satellites are uprated in power generation and battery storage when compared with their predecessors, QPS-SAR 1 and 2, however those were prototypes. QPS-SAR 3 and 4 each have a 3.6 m diameter antenna (after deployment) which has a mass as low as 10 kg. It is able to resolve objects as small as 0.7 m (~2 feet) in size.

Epsilon Rocket
Epsilon is basically a three-stage vehicle using solid motors on all three stages, with an optional post-boost stage (PBS) which uses liquid monopropellant. This PBS, in use on this flight, is based on the monopropellant reaction control system used on the H-II (A/ B) rocket.
Length | 26 m / 85 ft |
Diameter | 2.6 m / 8.5 ft |
Total Weight | 96 t / 212,000 lbs |

Items | 1st stage SRB-A3 | 2nd stage M-35 | 3rd stage KM-V2c | PBS1 | PLF2 |
Length (m) | 11.7 | 4.3 | 2.3 | 1.2 | 11.1 |
Diameter (m) | 2.6 | 2.6 | 1.4 | 1.5 | 2.6 |
Mass (ton) | 75.0 | 17.0 | 3.3 | 0.1 | 1.0 |
Propellant (ton) | 66.3 | 15.0 | 2.5 | 0.1 | N/A |
Thrust (kN) | 2,271 | 372 | 98.8 | 0.4 | N/A |
Burn time (s) | 116 | 140 | 90 | 1100 | N/A |
Propellant | Solid HTPB3 | Solid HTPB | Solid HTPB | Hydrazine | N/A |
ISP (s) | 284 | 300 | 301 | 215 | N/A |
Control | TVC4 SMSJ5 (Solid thruster) | TVC RCS6 (Thruster) | Spin | Thruster | N/A |
1 – Post Boost Stage
2 – Payload Fairing
3 – Hydroxyl-terminated polybutadiene
4 – Thrust Vector Control
5 – Solid Motor Side Jet
6 – Reaction Control System
Flight Profile and Deployment Timeline
Step | Description | Time (h m s) | Time (s) | Altitude (km) | Velocity (km/s) |
---|---|---|---|---|---|
1 | Lift off | 00 00 | 0 | 0 | 0.4 |
2 | 1st stage shutdown | 01 48 | 108 | 70 | 2.3 |
3 | fairing jettison | 02 31 | 151 | 115 | 2.1 |
4 | 1st stage separation | 02 41 | 161 | 123 | 2.1 |
5 | 2nd stage ignition | 02 45 | 165 | 126 | 2.1 |
6 | 2nd stage burnout | 04 54 | 294 | 202 | 4.8 |
7 | 2nd stage separation | 06 30 | 390 | 237 | 4.7 |
8 | 3rd stage ignition | 06 34 | 394 | 237 | 4.7 |
9 | 3rd stage burnout | 08 02 | 482 | 232 | 7.9 |
10 | 3rd stage separation | 09 54 | 594 | 235 | 7.9 |
11 | PBS 1st start | 16 33 | 993 | 277 | 7.8 |
12 | PBS 1st shutdown | 17 44 | 1,064 | 288 | 7.8 |
13 | PBS 2nd start | 41 24 | 2,484 | 554 | 7.5 |
14 | PBS 2nd shutdown | 50 46 | 3,046 | 572 | 7.6 |
15 | RAISE-3 deployment | 52 35 | 3,156 | 570 | 7.6 |
16 | MITSUBA & WASEDA-SAT-ZERO deployment | 1 06 30 | 3,990 | 570 | 7.6 |
17 | PBS 3rd start | 1 08 11 | 4,091 | 572 | 7.6 |
18 | PBS 3rd shutdown | 1 08 26 | 4,106 | 572 | 7.6 |
19 | QPS-SAR-3 deployment | 1 09 43 | 4,183 | 574 | 7.6 |
20 | MAGNARO deployment | 1 10 06 | 4,206 | 574 | 7.6 |
21 | QPS-SAR-4 deployment | 1 11 19 | 4,279 | 575 | 7.6 |
22 | KOSEN-2 & FSI-SAT deployment | 1 11 42 | 4,302 | 576 | 7.6 |