Epsilon-5 rocket carrying nine satellites lifts off from Uchinoura Space Center

RAISE-3 | Epsilon PBS

Lift Off Time
October 12, 2022 – 00:50:43 UTC | 09:50:43 JST
Mission Name
RAISE-3 & others, Epsilon Flight #6
Launch Provider
(What rocket company launched it?)
IHI Aerospace Co. Ltd (IA)
Customer
(Who paid for this?)
– Japan Aerospace Exploration Agency (JAXA)
– Institute for Q-Shu Pioneers of Space Inc. (iQPS) (for QPS-SAR-3 and 4)
Rocket
Epsilon S Launch Vehicle
Launch Location
 Uchinoura Space Center, Kimotsuki, Kagoshima Prefecture, Japan
Payload mass
~280 kg (~620 lbs)
Where were the satellites going?
Low Earth Orbit (LEO)
Did they attempt to recover the first stage?
No
Where did the first stage land?
It crashed into the South China Sea
Did they attempt to recover the fairings?
No
Were these fairings new?
Yes
This was the:
– 1st orbital launch attempt for Japan in 2022
– 6th flight of an Epsilon rocket
– 2nd flight of the Epsilon PBS variant
– 135th orbital launch attempt in 2022
Where to watch
Launch replay (English commentary)

How Did It Go?

Japan Aerospace Exploration Agency launched RAISE-3 and seven other payloads onboard an Epsilon rocket. A set of five CubeSats flew alongside the main payload.

Unfortunately, the launch was not successful. Preliminary information suggests that the flight was aborted via the Flight Termination System (FTS) prior to the separation of the 2nd and 3rd stages. The ignition of the 3rd stage did not occur on time. The 2nd stage appeared to burn out at the expected time, however.

During a JAXA press conference after the failure, it was stated that the vehicle had deviated from the correct attitude for stage separation. This has not been officially confirmed by JAXA however, who are still looking at the telemetry. The command to terminate the flight was sent from the ground at T + 6 min 28 seconds into the mission, 6 seconds prior to 3rd stage ignition time. This was  9:57:11 local time. Telemetry available on live streams appeared to cease at this time.

The primary payload for this flight was an on-orbit demonstration mission. It formed part of the Innovative Satellite Technology Demonstration Program which has been running since 2015. This was a 100 kg-class satellite that would have provided hosting for seven demonstration missions that were integrated onto the main RAISE-3 satellite. There is more information on this platform below.

Rideshare Cubesats:

Cubesat NameDimensions
MAGNARO10 x 10 x 34 cm
MITSUBA10 x 10 x 23 cm
KOSEN-210 x 10 x 23 cm
WASEDA-SAT-ZERO10 x 10 x 11 cm
FSI-SAT10 x 10 x 11 cm
Rideshare Cubesats flying with RAISE-3

RAISE-3 & Others Mission

RAISE-3 (RApid Innovative payload demonstration SatellitE-3)

RAISE-3 mission
RAISE-3 missions (1 of 2) (Credit: JAXA)
MissionComponent NameOrganizationObjectives (summary)
On-Orbit Demonstration of 920 MHz band Satellite IoT Platform using Satellite MIMO TechnologyLEOMINippon Telegraph and Telephone Corporation (NTT)On-orbit demonstration of Multiple-Input and Multiple-Output (MIMO) telecommunication technology
Software Receiver using Flexible Development MethodSDRXNEC Space Technologies, Ltd.On-orbit demonstration of a high-speed flexible software receiver using a signal processing board with COTS parts
On-Orbit Evaluation of Commercial GPU and its Model-based DevelopmentGEMINIMitsubishi Electric
Corporation (MELCO)
On-orbit evaluation of commercial GPU enabling ultra-high speed computation.
On-Orbit Demonstration of Micropropulsion System using Water PropellantKIRPaleBlue Inc.On-orbit demonstration of micro-propulsion system using water as propellant.
On-Orbit Demonstration and Performance Evaluation of PulsePlasma Thruster for Micro-satelliteTMU-PPTAdvanced
Technology
Institute, LLC.
On-orbit demonstration of Pulse-Plasma Thruster, enabling low-power and low-cost small propulsion system using solid
propellant.
On-Orbit Demonstration of
Deployable Membrane Deorbit
Mechanism for Micro-satellite
D-SAILAxelspace CorporationOn-orbit demonstration of deployable membrane structure, aiming to increase atmospheric drag and orbital decay rate.
On-Orbit Demonstration of Lightweight Deployable Membrane
Structure with Power Generation and Antenna Function for Society 5.0
HELIOSSakase Adtech Co., Ltd.On-orbit demonstration of lightweight deployable membrane structure with power generation and antenna function.
On-Orbit Demonstration Missions Integrated onto RAISE-3
RAISE mission, pt 2
RAISE-3 missions (2 of 2) (Credit: JAXA)

The RAISE-3 platform was based on the previous RAISE-2 platform, with slightly modified specifications.

ItemSpecification(s)
Operational period– 1 month for Commissioning Phase
– 13 months for Nominal Operation Phase
Orbit– Sun-synchronous Orbit (initial)
– Altitude: 560km (nominal)
– Inclination: 97.6deg (nominal)
– Local Time Descending Node: 9:30 am
LaunchPlanned in Fiscal Year 2022
DimensionsApproximately 1 m x 0.75 m x 1 m
(Launch configuration)
MassLess than 110 kg
Power generation– More than 215W at BOL
– More than 180W at EOL
(Average power generation during sunshine
period)
Communication– S-band for telecommand: Uplink: 4kbps, Downlink: 64kbps
– X-band for mission data and stored telemetry. Downlink: 16Mbps
Storage8 GB
Attitude control– 3-axis stabilized
– Earth pointing for nominal attitude
Available resources to mission payloads– Mass: more than 23kg
– Power: 105Wh (BOL) and 62Wh (EOL) over one orbit period
– Data volume: 926.7MB per day
– Payload mounting area: more than 2.5m2

MAGNARO

This was a 3U sized package that splits into two satellites after deployment. One is 2U and the other is 1U in size. They are connected by magnetism until their separation. After separating, they would have maintained formation flying between 2 km to 500 km distance from each other. Amateur radio operators would then have been able to use these satellites as repeaters for long-range communication.

MAGNARO (Credit: JAXA)

The satellites would have been deployed into a Sun-Synchronous orbit at 550 km altitude. The combined mass of the two satellites was 4.4 kg. The name is abbreviated from “MAGnetically separating NAno-satellite with Rotation for Orbit control”. The satellites were designed and built at Nagoya University.

MITSUBA

This satellite was described as “On-orbit degradation observation of COTS semi conductor for adding value to COTS database and On orbit demonstration of general USB device.” It was built by the Kyushu Institute of Technology. The satellite has a mass of 1.7 kg.

MITSUBA
MITSUBA (Credit: JAXA)

KOSEN-2

This satellite’s main platform was 11 cm x 11 cm x 23 cm, with a YAGI-style directional antenna which would have extended after deployment. It was designed to study deformation of the Earth’s crust under the sea floor. It makes use of dual reaction wheels to maintain attitude control. It would have taken observations using a combination of fish-eye camera lenses and magnetic sensors. It was developed by a partnership between the National Institute of Technology (KOSEN), Yonago College, Gunma College, and other educational bodies.

KOSEN-2
KOSEN-2 (Credit: JAXA)

WASEDA-SAT-ZERO

This satellite was a technology demonstrator for 3D-printed satellites. Its aim was to have zero fixing screws, zero mechanical parts to be assembled together, and zero debris. This was achieved by 3D-printing the entire chassis as a single element.

WASEDA-SAT-ZERO
WASEDA-SAT-ZERO (Credit: JAXA)

It would have been used to conduct experiments regarding deployment of membrane surfaces which might be used as solar panels for power generation or solar sail for propulsion. It was designed at Waseda University. The total mass of the satellite was 1.2 kg.

FSI-SAT

This was a 1U-sized, low cost satellite that featured a multi-spectral camera and on-board data processing system. It was designed to demonstrate that this technology could be deployed and operated at this small scale and at low cost. The satellite had a mass of only 1.4 kg. It was built by the Future Science Institute.

FS-SAT (Credit: JAXA)
FSI-SAT (Credit: JAXA)

QPS-SAR-3 and 4

QPS-SAR satellites were a set of small Earth observation satellites built by the QPS Institute (Institute for Q-shu Pioneers of Space, Inc.). They featured high resolution Synthetic Aperture Radar (SAR) in the X-band portion of the radio spectrum. When fully populated, the constellation is expected to have 36 satellites in operation.

This pair of satellites were uprated in power generation and battery storage when compared with their predecessors, QPS-SAR 1 and 2, however those were prototypes. QPS-SAR 3 and 4 each had a 3.6 m diameter antenna (after deployment) which had a mass as low as 10 kg. It would have been able to resolve objects as small as 0.7 m (~2 feet) in size.

QPS-SAR-3
QPS-SAR-3 (Credit iQPS)

Epsilon Rocket

Epsilon is basically a three-stage vehicle using solid motors on all three stages, with an optional post-boost stage (PBS) which uses liquid monopropellant. This PBS, in use on this flight, is based on the monopropellant reaction control system used on the H-II (A/ B) rocket.

Length26 m / 85 ft
Diameter2.6 m / 8.5 ft
Total Weight96 t / 212,000 lbs
Overall Specifications
Epsilon S rocket (exploded view)
Epsilon rocket (exploded view) (Credit: JAXA)
Items1st stage
SRB-A3
2nd stage
M-35
3rd stage
KM-V2c
PBS1PLF2
Length (m)11.74.32.31.211.1
Diameter (m)2.62.61.41.52.6
Mass (ton)75.017.03.30.11.0
Propellant (ton)66.315.02.50.1N/A
Thrust (kN)2,27137298.80.4N/A
Burn time (s)116140901100N/A
PropellantSolid
HTPB3
Solid
HTPB
Solid
HTPB
HydrazineN/A
ISP (s)284300301215N/A
ControlTVC4
SMSJ5
(Solid thruster)
TVC
RCS6
(Thruster)
SpinThrusterN/A
Stage Specifications

1 – Post Boost Stage
2 – Payload Fairing
3 – Hydroxyl-terminated polybutadiene
4 – Thrust Vector Control
5 – Solid Motor Side Jet
6 – Reaction Control System

Intended Flight Profile And Deployment Timeline

Step Description Time (h m s) Time (s) Altitude (km) Velocity (km/s)
1 Lift off 00 00 0 0 0.4
2 1st stage shutdown 01 48 108 70 2.3
3 fairing jettison 02 31 151 115 2.1
4 1st stage separation 02 41 161 123 2.1
5 2nd stage ignition 02 45 165 126 2.1
6 2nd stage burnout 04 54 294 202 4.8
7 2nd stage separation 06 30 390 237 4.7
8 3rd stage ignition 06 34 394 237 4.7
9 3rd stage burnout 08 02 482 232 7.9
10 3rd stage separation 09 54 594 235 7.9
11 PBS 1st start 16 33 993 277 7.8
12 PBS 1st shutdown 17 44 1,064 288 7.8
13 PBS 2nd start 41 24 2,484 554 7.5
14 PBS 2nd shutdown 50 46 3,046 572 7.6
15 RAISE-3 deployment 52 35 3,156 570 7.6
16 MITSUBA & WASEDA-SAT-ZERO deployment 1 06 30 3,990 570 7.6
17 PBS 3rd start 1 08 11 4,091 572 7.6
18 PBS 3rd shutdown 1 08 26 4,106 572 7.6
19 QPS-SAR-3 deployment 1 09 43 4,183 574 7.6
20 MAGNARO deployment 1 10 06 4,206 574 7.6
21 QPS-SAR-4 deployment 1 11 19 4,279 575 7.6
22 KOSEN-2 & FSI-SAT deployment 1 11 42 4,302 576 7.6

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from Everyday Astronaut

Subscribe now to keep reading and get access to the full archive.

Continue reading