Glonass-M No. 61 (Kosmos 2564) | Soyuz 2.1b/Fregat-M

Lift Off Time
November 28, 2022 – 15:17:00 UTC | 18:17:00 MSK
Mission Name
Kosmos 2564
Launch Provider
(What rocket company launched it?)
Russian Federal Space Agency
Customer
(Who paid for this?)
Russian Aerospace Defence Forces
Rocket
Soyuz 2.1b/Fregat-M
Launch Location
Pad 43/3, Plesetsk Cosmodrome, Arkhangelsk Oblast, Russia
Payload mass
1,415 kg (3,120 lb)
Where did the satellite go?
19,100 km (11,900 mi) Medium Earth Orbit64.8° inclination
Did they attempt to recover the first stage?
No, this is not a capability of the Soyuz rocket
Where did the first stage land?
It will crash into the ocean (probably the Kara Sea or Barents Sea)
Did they attempt to recover the fairings?
No, this is not a capability of the Soyuz rocket
Were these fairings new?
Yes
This was the:
– 220th launch from Site 43/3
– 79th launch of a Soyuz 2.1b
– 8th flight of a Soyuz 2.1b in 2022
17th flight of a Soyuz (any variant) in 2022
– 152nd orbital flight of a Soyuz 2 (any variant)
– 166th orbital launch attempt for 2022
Where to watch
If an official replay is available, we will link it here

How Did It Go?

Russia was expected to launch Glonass-M No.61, to medium Earth orbit. After a successful launch, the payload was re-designated Kosmos 2564.

Glonass-M No. 61

There are several constellations of satellites that provide military and commercial navigation information. Together they are known as Global Navigation Satellite Systems (GNSS). The first of these and the best known is the USA Navstar system, better known as the Global Positioning System (GPS). GLONASS is the Russian (formerly Soviet) equivalent system. China has its own Beidou system and the EU has set up its Galileo system. All four systems are now fully operational.

The first GLONASS satellite was launched in 1982. Full coverage was established by 1995, with 24 satellites. In the late 1990s, several of the original satellites started to fail. For a period of time, the failed satellites were not replaced, so the system’s capability was reduced. In 2001, the government decided to make the re-establishment of the full constellation a priority. By 2011 the constellation was fully re-established.

The satellites occupy three distinct orbital planes of 8 satellites per plane, 120 degrees apart from each other. GLONASS-M satellites have a typical life span of seven years. This particular satellite was completed back in 2015 and has been sitting in storage waiting for a suitable launch.

In total, 140 different GLONASS satellites have been launched. Therefore, the vast majority of them are now retired. GLONASS-K satellites (the third generation) have been designed to last for 10 years. They are made using Russian components, which is relatively new.

Soyuz 2.1b

Introduced in 1966, the Soyuz rocket (also known as R7) has been the workhorse of the Soviet/Russian space program. The first launch of the Soyuz 2.1a version on November 8, 2004 from the Plesetsk Cosmodrome represented a major step in the Soyuz launch vehicle’s development program. Fregat is the upper (4th) stage of Soyuz 2.1, and it first flew in the year 2000.

Evolution of the R7 / Soyuz rocket family
Evolution of the R7 / Soyuz rocket family (Credit: NASA / Peter Gorin / Emmanuel Dissais)

The Soyuz version currently being used for most satellite launches (as distinct from crewed capsules or cargo capsules to the ISS) is a four-stage launch vehicle, which consists of:

  • four side boosters (booster stage)
  • a central core booster (first stage, which is lit at the same time as the side boosters, on the ground)
  • an upper (central) stage which is common to all Soyuz rockets regardless of payload
  • the re-startable Fregat “upper” stage (fourth stage) – this is not always used, for example it is not used with Soyuz spacecraft or Progress spacecraft

Side Boosters

The side boosters’ RD-107A engines are powered by liquid oxygen and kerosene, which are the same propellants used on each of the rocket stages. The kerosene tanks are located in the cylindrical part and the liquid oxygen tanks in the conical section. Each engine has four combustion chambers and four nozzles.

During side booster separation, the boosters perform a well-known pattern, in which they peel off and cartwheel outwards! This is known as the “Korolev cross,” named after Sergei Korolev, the Chief Design Engineer of the USSR space program in the 1960s.

Korolev cross during side booster stage separation on a Soyuz launch
“Korolev cross” seen during side booster stage separation on a Soyuz launch. (Credit: Arianespace)

Center Core

The center core is fitted with an RD-108A engine, and also has four combustion chambers and four nozzles. It also has four Vernier thrusters, used for three-axis flight control once the side boosters have separated. The third stage engine’s thrust enables the stage to separate directly from the central core. This is called “hot staging.”

Second Stage

The second stage uses either an RD-0110 engine in the Soyuz ST-A (2.1a) version or an RD-0124 engine in the ST-B (2.1b) version. This flight was using a 2.1b vehicle, so in this case, the stage had an RD-0124 engine.

Rocket-motor-RD-0124
RD-0124 motor at Salon-du-Bourget 2013. (Credit: Pline)

Fregat Upper Stage

Flight qualified in 2000, the Fregat upper stage is an autonomous and flexible stage that is designed to operate as an orbital vehicle. It extends the Soyuz launcher’s capability, now covering a full range of orbits (LEO, SSO, MEO, GTO, GEO and Earth escape). Fregat is independent of all the other stages, as it has its own guidance, navigation, attitude control, tracking, and telemetry systems. The stage’s engine uses storable propellants – UDMH (unsymmetrical dimethylhydrazine) and NTO (nitrogen tetroxide) – and can be restarted up to 50 times in flight so that it can carry out very complex missions.

The Fregat upper stage is encapsulated in a fairing with the payload and a payload adaptor/dispenser. It is entirely independent from the rest of the rocket, having its own systems on board for guidance, navigation and control. It also provides its own telemetry data back to the ground.

Fregat uses the S5.92 engine, which uses unsymmetrical dimethyl hydrazine (UDMH) for fuel and nitrogen tetroxide (NO4) for oxidizer. These propellants are hypergolic, meaning that no ignition source is required. The fuel and oxidizer will combust as soon as they meet in the combustion chamber.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: