Dragon CRS-2 SpX-27 | Falcon 9 Block 5

Lift Off Time
March 15, 2023 – 00:30 UTC
March 14, 2023 – 20:30 EDT
Mission Name
Dragon CRS-2 SpX-27, a Commercial Resupply Service mission to the International Space Station (ISS)
Launch Provider
(What rocket company launched it?)
SpaceX
Customer
(Who paid for this?)
National Aeronautics and Space Administration (NASA)
Rocket
Falcon 9 Block 5 Booster 1073-7; 35.96-day turnaround
Launch Location
Launch Complex 39A (LC-39A), Kennedy Space Center, Florida, USA
Payload mass
Not Specified
Where did the spacecraft go?
Dragon C209-3 rendezvoused with the ISS, ~400 km low Earth orbit (LEO) at a 51.66° inclination
Did they attempt to recover the first stage?
Yes
Where did the first stage land?
Autonomous Spaceport Drone Ship A Shortfall of Gravitas
Did they attempt to recover the fairings?
There are no fairings on the Dragon 2
Were these fairings new?
There are no fairings on the Dragon 2
This was the:
– 210th Falcon 9 launch
– 144th Falcon 9 flight with a flight-proven booster
– 150th re-flight of a booster
– 16th re-flight of a booster in 2023
– 178th booster landing
– 104th consecutive landing (a record)
– 17th launch for SpaceX in 2023
– 62nd SpaceX launch from LC-39A

3rd flight of Dragon 2 C209
36th orbital launch attempt of 2023 (33rd successful orbital launch)
Where to watch
Once available, an official livestream can be found here

What’s All This Mean?

Dragon CRS-2 SpX-27 (CRS-27) is a Commercial Resupply Service mission that headed to the International Space Station (ISS) to deliver cargo. SpaceX was awarded this mission by NASA back in 2016 and launched it on its Falcon 9 Block 5 rocket using a Cargo Dragon 2, C209-3, the third flight for this Dragon capsule. The rocket lifted off from Launch Complex 39A, at the Kennedy Space Center in Florida. CRS-27 was the seventh flight for SpaceX under NASA’s CRS Phase 2 contract.

Cargo Dragon C209-3 successfully docked with the ISS at 11:32 UTC, on March 16, 2023.

CRS-2 SpX-27 – CRS-27

The International Space Station (ISS) is a large international collaboration between nations across the globe. Operating for over 20 years, the orbital laboratory needs regular visits from cargo vehicles to deliver new experiments, supplies like clothing, food, and water, and eventually act has a garbage disposal for used items.

Currently, three different vehicles from three different entities have the capability to carry cargo to the ISS. Northrup Grumman’s Cygnus spacecraft launched by NASA, ROSCOSMOS’s Soyuz Progress spacecraft, and SpaceX’s Cargo Dragon spacecraft.

Cygnus recently launched a resupply mission to the ISS with the S.S. Sally Ride vehicle on their CRS-2 NG-18 mission from Wallops Island, Virginia, USA. The last Progress launch was in early February on the Progress MS-22 mission. The last SpaceX resupply mission was in late November of 2022, CRS-2 SpX-26.

CRS-27 Research Payloads

Every resupply mission hosts dozens of experiments and technology demonstrations. On CRS-27, these range from vegetation experiments to new solar arrays for the ISS to provide greater power consumption. These research experiments can range from NASA-funded experiments to private companies and universities. Due to the amount of research on CRS-27, only select payloads will be discussed in-depth here. If you’d like to learn more, check out and explore NASA’s or the National Lab’s websites.

BFF-Meniscus

BFF-Meniscus is an experiment that evaluates the feasibility of using the ISS’ BioFabrication Facility to print a meniscus. The investigation consists of two phases. Phase I is considered a proof of concept and attempts to print a meniscus with a combination of Techshot and 4D Bio3 Bio-Inks. 4D Bio3 will provide a support syringe, while Techshot will provide Bio-Inks that are already on the ISS.

Phase II will then attempt to print a meniscus tissue sample with 4D Bio3 cells and inks only. The prints of phase II will be completed in test print cassettes and tissue cassettes and will after successful completion be transferred to the ADvanced SEParations (ADSEP) facility. There the samples will be cultured for 14 days before phase II concludes with the tissue being fixed. Later, the samples will be returned to the experiments principal investigator (PI) for further analysis.

Possible applications of this investigation would be addressing musculoskeletal injuries in space and on Earth, as well as improving the understanding and limits of bio-fabrication and the cells response to microgravity. This could be beneficial for future tissue-engineering solutions for aforementioned injuries.

Cellular Mechanotransduction by Osteoblasts in Microgravity

The Cellular Mechanotransduction by Osteoblasts in Microgravity project will investigate how being in a microgravity environment contributes to the loss of bone mass. The project uses a device that will measure the stiffness of human osteoblasts, which are cells involved in the formation of bone. It is believed that microgravity affects the structures of cells, reducing the stiffness in bone cells. This is similar to what we see with the effect of aging on cells on Earth. Osteoporosis is a condition that causes bones to become increasingly weak and brittle as people age. Fragile bones are more susceptible to fractures from low-impact forces and falling.

Previous studies have shown that microgravity can induce accelerated bone loss; however, researchers are still determining how this happens. In this project, the research team will study a group of proteins and their effect on osteoblasts in microgravity. 

This project will have applications both in space and back on Earth. The research will help develop countermeasures for astronauts who experience bone loss in space. Back on Earth, the study will improve prevention and treatment for osteoporosis and other age-related conditions.

CRS-27, cellular mechanotransduction by osteoblasts in microgravity, ISS
The Cellular Mechanotransduction by Osteoblasts CubeLab aboard the International Space Station (Credit: NASA)

Effect of Microgravity on Drug Responses Using Engineered Heart Tissues

The Effect of Microgravity on Drug Responses Using Engineered Heart Tissues project will study the effect of microgravity on heart function. Muscles such as the heart weaken in microgravity environments as they experience a very different gravitational load from that on Earth. This difference in gravity can induce abnormalities in cells, like that seen in atrophy, a disease in which heart muscles are weakened and may lead to heart failure. These types of responses to the long-term microgravity environment are like heart diseases on Earth but on a much faster timeline.

This project builds on a previous study that showed that exposure to microgravity for extended time periods caused noticeable changes in heart cell function, which could lead to long-term impacts. In this study, researchers will investigate whether engineered heart tissue experiences atrophy in microgravity and whether FDA-approved medications could counter this. This project’s results can be used to develop new drugs to treat heart conditions on Earth.

Screening and Batch Manufacturing of Complex Biotherapeutics in Microgravity

Another experiment on CRS-27 is the Screening and Batch Manufacturing of Complex Biotherapeutics in Microgravity. It will examine the crystallization process of multiple biotherapeutics, such as monoclonal antibodies. Microgravity aids in producing diffraction quality crystals. Analyzing the structure of those crystals can help in understanding the biotherapeutic’s properties. This better understanding can then lead to reduced production cost, enable formulations of biotherapeutics that are more stable, and can be administered more easily.

Structure and Stability of Foams and Emulsions

The Structure and Stability of Foams and Emulsions project will investigate the properties and performance of foams and emulsions. The study will use particles with different shapes and surface roughness to stabilize foams and emulsions. The unique microgravity environment of the ISS enables the examination of the microstructures of foams and emulsions without the influence of gravity-related factors. This means the project will show a physical phenomenon that has been predicted by models but has never actually been observed – that is the optimal packing structure of dry foams. The project will also investigate if eco-friendly nanoparticles can be used as a stabilizer for foams and emulsions.

What Is Falcon 9 Block 5?

The Falcon 9 Block 5 is SpaceX’s partially reusable two-stage medium-lift launch vehicle. The vehicle consists of a reusable first stage, an expendable second stage, and, when in payload configuration, a pair of reusable fairing halves.

First Stage

The Falcon 9 first stage contains nine Merlin 1D+ sea-level engines. Each engine uses an open gas generator cycle and runs on RP-1 and liquid oxygen (LOx). Each engine produces 845 kN of thrust at sea level, with a specific impulse (ISP) of 285 seconds, and 934 kN in a vacuum with an ISP of 313 seconds. Due to the powerful nature of the engine, and the large amount of them, the Falcon 9 first stage is able to lose an engine right off the pad, or up to two later in flight, and be able to successfully place the payload into orbit.

The Merlin engines are ignited by triethylaluminum and triethylborane (TEA-TEB), which instantaneously burst into flames when mixed in the presence of oxygen. During static fire and launch the TEA-TEB is provided by the ground service equipment. However, as the Falcon 9 first stage is able to propulsively land, three of the Merlin engines (E1, E5, and E9) contain TEA-TEB canisters to relight for the boost back, reentry, and landing burns.

Second Stage

The Falcon 9 second stage is the only expendable part of the Falcon 9. It contains a singular MVacD engine that produces 992 kN of thrust and an ISP of 348 seconds. The second stage is capable of doing several burns, allowing the Falcon 9 to put payloads in several different orbits.

For missions with many burns and/or long coasts between burns, the second stage is able to be equipped with a mission extension package. When the second stage has this package it has a grey strip, which helps keep the RP-1 warm, an increased number of composite-overwrapped pressure vessels (COPVs) for pressurization control, and additional TEA-TEB.

falcon 9 block 5, launch
Falcon 9 Block 5 launching on the Starlink V1.0 L27 mission (Credit: SpaceX)

Falcon 9 Booster

The booster supporting the CRS-27 mission is B1073-7. As the name implies, the booster has supported six previous missions.

B1073’s missionsLaunch Date (UTC)Turnaround Time (Days)
Starlink 4-15May 14, 2022 – 20:40N/A
SES-22June 29, 2022 – 21:0446.02
Starlink 4-26August 10, 2022 – 02:1441.22
Starlink 4-35September 24, 2022 – 23:3245.89
HAKUTO-R Mission 1December 11, 2022 – 07:3877.34
Amazonas NexusFebruary 07, 2023 – 01:3257.75
Dragon CRS-2 SpX-27March 15, 2023 – 01:3035.96

Following launch, the Falcon 9 booster will conduct three burns. These burns aim to softly touch down the booster on the Autonomous Spaceport Drone Ship (ASDS) A Shortfall of Gravitas .

falcon 9 booster, landing, drone ship
Falcon 9 landing on Of Course I Still Love You after launching Bob and Doug (Credit: SpaceX)

Cargo Dragon 2

The CRS-27 mission will be the third mission to the ISS for Cargo Dragon C209-3. Like its fellow Dragons C209 will hopefully return to Earth after serving its time on the ISS bringing back experiments and other cargo. It will then be refurbished and used on another mission in the future.

C209’s missionsLaunch Date (UTC)Turnaround Time (Days)
Dragon CRS-2 SpX-22June 03, 2021N/A
Dragon CRS-2 SpX-24December 21, 2021201
Dragon CRS-2 SpX-27March 15, 2023449

Cargo Dragon 2 is 8.1 m (26.6 ft in) in height and 3.7 meters (12 feet) in diameter. Compared to the original Cargo Dragon, the upgraded spacecraft can and will automatically dock on the ISS. The old version had to be manually berthed by Canadarm2.

SpaceX’s Cargo Dragon spacecraft, Dragon 2, CRS-23 mission
The upgraded version of SpaceX’s Cargo Dragon spacecraft, Dragon 2 (Credit: NASA)

The Cargo Dragon 2 shares a similar design with the Crew Dragon spacecraft intended to carry astronauts to the ISS and back to Earth. However, there are some differences. The Cargo Dragon 2 does not have SuperDraco abort engines, nor a life support system since there will be no human passengers on board. In the pressurized section, the seats and crew displays have been swapped for cargo racks. The environmental control system has been also reduced both in size and complexity.

Overall, the CRS-27 mission’s success criteria will be successful deployment of the Cargo Dragon 2 to the dedicated orbit, its docking to the ISS, and recovery of the booster.

CRS-27 Countdown

All times are approximate

HR/MIN/SECEVENT
00:38:00SpaceX Launch Director verifies go for propellant load
00:35:00RP-1 (rocket grade kerosene) loading begins
00:35:001st stage LOX (liquid oxygen) loading begins
00:16:002nd stage LOX loading begins
00:07:00Falcon 9 begins pre-launch engine chill
00:05:00Dragon transitions to internal power
00:01:00Command flight computer to begin final prelaunch checks
00:01:00Propellant tanks pressurize for flight
00:00:45SpaceX Launch Director verifies go for launch
00:00:03Engine controller commands engine ignition sequence to start
00:00:00Falcon 9 liftoff

LAUNCH, LANDING, AND DEPLOYMENT

All times are approximate

HR/MIN/SECEVENT
00:01:12Max Q (moment of peak mechanical stress on the rocket)
00:02:271st stage main engine cutoff (MECO)
00:02:301st and 2nd stages separate
00:02:382nd stage engine starts
00:02:421st stage boostback burn begins
00:03:151st stage boostback burn complete
00:05:451st stage entry burn begins
00:05:592nd stage engine cutoff (SECO-1)
00:07:061st stage landing burn begins
00:07:331st stage landing
00:08:37Dragon separates from 2nd stage
00:11:49Dragon nosecone open sequence begins

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from Everyday Astronaut

Subscribe now to keep reading and get access to the full archive.

Continue reading