Starlink 26 | Falcon 9 Block 5

Lift Off Time
(Subject to change)
May 15, 2021 – 22:56 UTC | 18:56 EDT
Mission Name
Starlink V1.0 L26 & Rideshares: the 28th Starlink mission, one Capella spacecraft, and Tyvak-0130
Launch Provider
(What rocket company is launching it?)
SpaceX
Customer
(Who’s paying for this?)
SpaceX, Capella Space, and Tyvak
Rocket
Falcon 9 Block 5 B1058-8; 38 day turn around
Launch Location
Launch Complex 39A (LC-39A), Kennedy Space Center, Florida, USA
Payload mass
~14,000 kg (~31,000 lbs) (52 x 260 kg, plus dispenser)
Where are the satellites going?
Starlink Shell 1; 550 km circular low-Earth Orbit (LEO), initial orbit: 53.06° 569 x 582 km
Will they be attempting to recover the first stage?
Yes
Where will the first stage land?
~620 km downrange on Of Course I Still Love You

Tug: Mr. Jonah; Support: GO Quest
Will they be attempting to recover the fairings?
The fairing halves will be recovered from the water ~665 km downrange by Shelia Bordelon
Are these fairings new?
The active half and passive half have flown on one previous mission; 153 and 147 day turnaround time
How’s the weather looking?
The weather is currently 70% go for launch (As of May 15, 2021 13:30 UTC)
This will be the:
– 118th Falcon 9 launch
– 60th Falcon 9 flight with a flight proven booster
– 64th re-flight of a booster

3rd 8th flight of a booster
– 5th fastest turnaround time of a Falcon 9
– 15th re-flight of a booster in 2021
– 84th booster landing
– 15th launch for SpaceX in 2021
– 35th SpaceX launch from LC-39A

43rd orbital launch attempt of 2021

Stats powered by boostertracker.com
Where to watch
Official livestream

What’s this all mean?

SpaceX’s Starlink V1.0 L26 (Starlink 26) mission will launch 52 Starlink satellites, a Capella synthetic-aperture radar spacecraft, and the Tyvak-0130 optical spectrum astronomy observation satellite atop its Falcon 9 rocket. The Falcon 9 will lift off from Launch Complex 39A (LC-39A), at the Kennedy Space Center, in Florida, United States. Starlink 26 will mark the 27th operational Starlink mission, boosting the total number of Starlink satellites launched to 1,677, of which 1,606 will still be in orbit around the Earth once launched.

Capella Spacecraft Overview

Capella Space’s Sequoia satellite is a 100 kg (220 lbs) Synthetic Aperture Radar (SAR) satellite. It is part of the planned 36 satellite constellation. Several satellites have been launched so far, on the I Can’t Believe It’s Not Optical Electron mission and on SpaceX’s Transporter-1 mission. Sequoia will aid in disaster relief, mapping areas for agriculture and infrastructure advancement, as well as security. It has the unique capability to detect sub 0.5 meter changes in the Earth’s surface.

Key Features:

  • Has the ability to deliver high-contrast, low noise, sub 0.5 meter imagery to the public
  • 3.5 meter mesh reflector and and a 400W solar array
  • Thermal systems can aid tin taking longer images up to 4,000 km long 
  • Large reaction wheels allow fast satellite movement for a larger range of imaging capabilities 
  • A very high downlink rate of 1.2 Gbps to allow faster image download
  • Real-time tasking abilities through Inmarsat

Starlink is SpaceX’s internet communication satellite constellation. The Low-Earth orbit constellation will deliver fast, low-latency internet service to locations where ground-based internet is unreliable, unavailable, or expensive. The first phase of the constellation consists of 5 orbital shells.

Starlink is currently in the “Better Than Nothing Beta,” allowing anyone in approved regions to order or preorder. However, for now, only higher latitudes are fully covered, so people of lower latitudes are currently only able to pre-order Starlink. After 28 launches SpaceX will achieve global coverage, but the constellation will not be complete until ~42,000 satellites are in orbit. Given SpaceX’s current Starlink production and launch rate, Starlink will have global coverage, excluding the poles, by the middle of 2021.

Once Starlink is complete, the venture is expected to profit $30-50 billion annually. This profit will largely finance SpaceX’s ambitious Starship program, as well as Mars Base Alpha.

Starlink satellites and dispenser.
A stack of 60 Starlink satellites prior to be encapsulated into Falcon 9’s payload fairing. (Credit: SpaceX)

Each Starlink V1.0 satellite has a compact design and a mass of 260 kg. SpaceX developed a flat-panel design, allowing them to fit as many satellites as possible into the Falcon 9’s 5.2 meter wide payload fairing. Due to this flat design, SpaceX is able to fit up to 60 Starlink satellites and the payload dispenser into the second stage, while still being able to recover the first stage. This is near the recoverable Falcon 9’s payload capacity to LEO, at around 17 tonnes. 

For how small each Starlink satellite is, each one is packed with high-tech communication and cost-saving technology. Each Starlink satellite is equipped with 4 phased array antennas, for high bandwidth and low-latency communication, and two parabolic antennas. The satellites also include a star tracker, which provides the satellite with attitude data, ensuring precision in broadband communication. 

The Starlink satellites are also equipped with an autonomous collision avoidance system, which utilizes the DOD’s debris tracking database to autonomously avoid collisions with other spacecraft and space junk. 

Currently, the Starlink satellites being launched into polar orbit have a laser communication system on board. This system is currently in version 0.9, however SpaceX is expecting all new Starlink satellites to be equipped with it by next year.

To decrease costs, each satellite only has a single solar panel, which simplifies the manufacturing process. To further cut costs, Starlink’s propulsion system, an ion thruster, uses krypton as fuel, instead of xenon. While the specific impulse (ISP) of krypton is significantly lower than xenon’s, it is far cheaper, which further decreases the satellite’s manufacturing cost.

Ion Power

Each Starlink satellite is equipped with the first Hall-effect krypton powered ion thruster. This thruster is used not only for ensuring the correct orbital position, but also for orbit raising and orbit lowering. At the end of the satellite’s life, this thruster is used to deorbit the satellite.

A satellite constellation is a group of satellites that work in conjunction for a common purpose. Currently, SpaceX plans to form a network of 11,716 satellites; however, in 2019 SpaceX filed an application with the Federal Communication Commission (FCC) for permission to launch and operate an additional 30,000 satellites as part of phase 2 of Starlink. To put this number of satellites into perspective, this is roughly 20 times more satellites than were launched before 2019. 

Of the initial ~12,000 satellites, ~4,400 would operate on the Ku and Ka bands, with the other ~7,600 operating on the V-Band. 

Due to the vast number of Starlink satellites, many astronomers are concerned about their effect on the night sky. However, SpaceX is working with the astronomy community and implementing changes to the satellites to make them harder to see from the ground and less obtrusive to the night sky. SpaceX has changed how the satellites raise their orbits and, starting on Starlink V1.0 L9, added a sunshade to reduce light reflectivity. These changes have already significantly decreased the effect of Starlink on the night sky.

Phase 1 Orbital Shells:

Inclination (°)Orbital Altitude (km)Number of Satellites
Shell 153.05501,584
Shell 253.25401,584
Shell 370.0570720
Shell 497.6560348
Shell 597.6560172
Orbital Shells

Shell 1

The first orbital shell of Starlink satellites will consist of 1,584 satellites in a 53° 550 km low-Earth orbit. Shell 1 consists of 72 orbital planes, with 22 satellites in each plane. This is the shell that SpaceX is currently filling, and it is expected that this shell will be complete by June 2021. Once complete, the first shell will provide coverage between roughly 52° and -52° latitude (~80% of the Earth’s surface), and will not feature laser links until replacement satellites will launch after 2021.

Shell 2

The second shell will consist of 1,584 satellites in a 540 km 53.2° LEO. This updated orbital configuration will slightly increase coverage area and will drastically increase the bandwidth of the constellation. This shell will also consist of 72 orbital planes with 22 satellites in each plane. After the first shell’s completion it is expected that SpaceX will fill this shell alongside with the 4th shell next.

Shell 3

Starlink’s third shell will host 720 satellites in a 70° 570 km orbit. These satellites will significantly increase the coverage area, which will make the Starlink constellation cover around 94% of the globe. SpaceX will put 20 satellites in each of the 36 planes in the third shell.

Shell 4

Shell 4 will consist of 348 satellites in a 97.6° 560 km orbit. SpaceX deployed 10 laser link test satellites into this orbit on their Transporter-1 mission to test satellites in a polar orbit. On April 6, 2021 Gwynne Shotwell said that SpaceX will conduct regular polar Starlink launches in the summer. All satellites that will be deployed into this orbit will have intersatellite laser link communication. Shell 4 will have 6 orbital planes with 58 satellites in each plane.

Shell 5

The final shell of phase 1 of Starlink will host 172 satellites in another 97.6° 560 km low-Earth polar orbit. Shell 5 will also consist purely of satellites with laser communication links, however unlike shell 4 it will consist of 4 orbital planes with 43 satellites in each plane.

Phase 2 Orbital Shells:

Shell 6

The sixth orbital shell of Starlink satellites is permitted to consist of 2,493 satellites in a 42° 335.9 km LEO. This large number of satellites will decrease latency and increase bandwidth for lower latitudes.

Shell 7

The seventh Starlink shell permits SpaceX to deploy 2,478 satellites into a 48° 340.8 km low-Earth orbit. These satellites will further decrease latency and increase bandwidth for lower latitudes.

Shell 8

The final shell of Starlink phase 2 allows SpaceX to deploy 2,547 satellites in a 53° 345.6 km orbit.

SpaceX has until March of 2024 to be half complete with phase 1, and phase 1 must be complete by March of 2027. Phase 2 must be half complete by November of 2024, and be finished by November of 2027. Failure to do so could result in SpaceX losing their dedicated frequency band.

What is Falcon 9 Block 5?

The Falcon 9 Block 5 is SpaceX’s partially reusable two-stage medium-lift launch vehicle. The vehicle consists of a reusable first stage, an expendable second stage, and, when in payload configuration, a pair of reusable fairing halves.

First Stage

The Falcon 9 first stage contains 9 Merlin 1D+ sea level engines. Each engine uses an open gas generator cycle and runs on RP-1 and liquid oxygen (LOx). Each engine produces 845 kN of thrust at sea level, with a specific impulse (ISP) of 285 seconds, and 934 kN in a vacuum with an ISP of 313 seconds. Due to the powerful nature of the engine, and the large amount of them, the Falcon 9 first stage is able to lose an engine right off the pad, or up to two later in flight, and be able to successfully place the payload into orbit.

The Merlin engines are ignited by TEA-TEB. During static fire and launch the TEA-TEB is provided by the ground service equipment. However, as the Falcon 9 first stage is able to propulsively land three of the Merlin engines (E1, E5, and E9) contain TEA-TEB canisters to relight for the boost back, reentry, and landing burns.

Second Stage

The Falcon 9 second stage is the only expendable part of the Falcon 9. It contains a singular MVacD engine that produces 992 kN of thrust and an ISP of 348 seconds. The second stage is capable of doing several burns, allowing the Falcon 9 to put payloads in several different orbits.

For missions with many burns and/or long coasts between burns, the second stage is able to be equipped with a mission extension package. When the second stage has this package it has a grey strip, which helps keep the RP-1 warm, an increased number of COPVs for pressurization control, and additional TEA-TEB.

Falcon 9 and Starlink
Falcon 9 Block 5 launching on the GPS Block III SV03 mission (Credit: SpaceX)

Falcon 9 Booster B1058

The booster supporting Starlink 26 is B1058, which has flown seven times. As Starlink 26 marks the booster’s 8th flight, it changes its designation to B1058-8.

B1058’s missionsLaunch Date (UTC)Turnaround Time (Days)
SpaceX Demo-2May 30, 2020N/A
ANASIS-IIJuly 20, 202051
Starlink V1.0 L12October 6, 202078
CRS-21December 6, 202061
Transporter-1January 24, 202149
Starlink V1.0 L20March 11, 202146
Starlink V1.0 L23April 7, 202127
Starlink V1.0 L26May 15, 202138

Following stage separation, the Falcon 9 will conduct 2 burns. These burns will softly touch down the booster on SpaceX’s autonomous spaceport drone ship Of Course I Still Love You.

Falcon 9 landing on Of Course I Still Love You after launching Bob and Doug (Credit: SpaceX)

Falcon 9 Fairings

The Falcon 9’s fairing consists of two dissimilar reusable halves. The first half (the half that faces away from the transport erector) is called the active half, and houses the pneumatics for the separation system. The other fairing half is called the passive half. As the name implies, this half plays a purely passive role in the fairing separation process, as it relies on the pneumatics from the active half.

Both fairing halves are equipped with cold gas thrusters and a parafoil which are used to softly touch down the fairing half in the ocean. SpaceX used to attempt to catch the fairing halves in nets on GO Ms. Tree and GO Ms. Chief. However, at the end of 2020 this program was cancelled due to safety risks and a low success rate. On Starlink 26, SpaceX will attempt to recover both the active and passive half from the water with their recovery vessel Shelia Bordelon.

SpaceX is currently flying two slightly different versions of the Falcon 9 fairing. The new “upgraded” version has vents only at the top of each fairing half, by the gap between the halves, whereas the old version had vents placed spread equidistantly around the base of the fairing. Moving the vents decreases the chance of water getting into the fairing, making the chance of a successful scoop significantly higher.

Starlink 26 Full Mission Profile

Hr/Min/Sec              Event

– 00:38:00                 SpaceX Launch Director verifies go for propellant load.
– 00:35:00                 RP-1 (rocket grade kerosene) loading underway.
– 00:35:00                 1st stage LOx (liquid oxygen) loading underway
– 00:16:00                 2nd stage LOx loading underway
– 00:07:00                 Falcon 9 begins engine chill prior to launch
– 00:01:00                 Command flight computer to begin final prelaunch checks
– 00:01:00                 Propellant tank pressurization to flight pressure begins
– 00:00:45                 SpaceX Launch Director verifies go for launch
– 00:00:03                 Engine controller commands engine ignition sequence to start
– 00:00:00                 Falcon 9 Liftoff


Hr/Min/Sec              Event

00:01:12                   Max Q (moment of peak mechanical stress on the rocket)
00:02:33                   1st stage main engine cutoff (MECO)
00:02:36                   1st and 2nd stages separate
00:02:44                   2nd stage engine starts (SES-1)
00:03:04                   Fairing deployment
00:06:53                   1st stage entry burn complete
00:08:35                   1st stage landing
00:08:47                   2nd stage engine cutoff (SECO-1)
00:45:33                   2nd stage engine starts (SES-2)
00:45:35                   2nd stage engine cutoff (SECO-2)
01:03:51                   Starlink 26 payload deploy

* All times are approximate

1 comment

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from Everyday Astronaut

Subscribe now to keep reading and get access to the full archive.

Continue reading